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I. INTRODUCTION

Linear approximations project the function on m vectors
selected a priori. The approximation can be made more
precisely by choosing the m orthogonal vectors depending on
the signal properties.

Non-linear algorithms outperform linear projections by ap-
proximating each function with vectors selected adaptively
within a basis. Let {ϕn(x)} be an orthogonal basis in L2[0, 1]
, and let {fm(x)} be the projection of f over m vectors whose
indices are in Am.

fm(x) =
∑
k∈Am

< f,ϕk > ϕk(x), where

< f,ϕk >= dk(f) :=

∫ 1

0

f(t)ϕk(t)dt.

The approximation error have the form

rm(f) := ||f − fm||2 =

[∫ 1

0

|f(x)− fm(x)|2dx
] 1

2

=

=

( ∑
k∈Am

|dk(f)|2
) 1

2

To minimize this error, the indices in Am must correspond
to the m vectors having the largest inner product amplitude
| < f, ϕk > |. They are the vectors that best correlate f(x)
. So they can be interpreted as the ”main” features of f(x) .
The resulting rm(f) is necessarily smaller than the error of
the linear approximation, which selects the m approximation
vectors independently of f(x). Let us sort {|dk(f)|}k≥1 in
decreasing order

|dσ(k)(f)| ≥ |dσ(k+1)(f)|, k = 1, 2, ... ; .
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The best non-linear approximation is

f bestm (x) =
m∑
k=1

dσ(k)(f)ϕσ(k)(x).

For any f(x) ∈ L1[0, 1] and m = 1, 2, ... we put

ck(f) =

∫ 1

0

f(t)e−i2πktdt, k = 0,±1,±2, .... ;

Sm(f) =
∑
|k|≤m

ck(f)ei2πkx

We call a permutation σ = {σ(k)}∞k=1 of natural numbers
decreasing and write σ ∈ D(f), if

|cσ(k)(f)| ≥ |cσ(k+1)(f)|, k = 1, 2, ... ; σ(−k) = −σ(k) .

In the case of strict inequalities here D(f) consists of only
one permutation. We define the m-th greedy approximant of f
with respect to the trigonometric system T ≡ {ei2πkx}+∞k=−∞
corresponding to a permutation σ ∈ D(f) by formula

Gm(f) = Gm(f, T, σ) =
∑

1≤|k|≤m

cσ(k)(f)ei2πσ(k)x .

This nonlinear method of approximation is known as greedy
algorythm (see for example [1], [2]).

The greedy algorithm of a function f ∈ L[0,1] with respect
to the trigonometric system is said to converge to f in the
norm of L1[0, 1] if

lim
m→∞

∫ 1

0

|Gm(f, T, σ)− f(x)|dx = 0 ,

for some σ ∈ D(f). For more on that algorithm , see [3]-[20].
The above mentioned definitions are given not in the most

general form and only in the generality, in which they will be
applied in the present paper.

Note that Gm(x, f, T ) gives the best m-term approximation
in L2[0, 1]− norm

‖Gm(f,Ψ, σ)−f‖2 = Rm(f) = inf
|n|∈Λ

‖
∑

ane
i2πkx−f‖2 =

=

( ∞∑
n=m+1

|cσ(n)(f)|2
) 1

2

where inf is taken over coefficients an and sets of indices

Λwith cardinality |Λ| = m, and σ = {σ(n)}∞n=1 ∈ D(f)
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It is clear that for each f(x) ∈ L2[0, 1], Rm(f) →

0asm→∞ .
V.N.Temlyakov [3] proved the existance of a function

f0(x) ∈ L[0,1], such that

lim
m→∞

∫ 1

0

|Gm(fo, T, σ)|dx = +∞ .

In this paper we prove the following results.
Theorem 1. (L-strong and greedy property). For any ε > 0

there exists a measurable set E ⊂ [0, 1], with measure
|E| > 1 − ε such that for any function f(x) ∈ L[0,1] one
can find a function g(x) ∈ L[0, 1] equal to f(x) on E such
that its Fourier series and greedy algorithm with respect to the
trigonometric system converges to g(x) in the L[0,1]- norm.

Theorem 2.Let f ∈ L2[0, 1] be a periodic function with
period 1 and let δ > 0, if∫ 1

0

∫ 1

0

[f(x+ t)− f(x− t)]2

t
(ln

1

t
)δdx <∞,

then

R2
k(f) = ( ‖Gm(f,Ψ, σ)− f‖2)2 ≤

≤ (
∞∑
k=1

|ck(f)|2(ln k)
1+δ

)
1

(ln k − ln 2)δ
.

and

R2
k(f) = o

(
1

lnδ k

)
, (R2

k(f) ln k)
δ

)→ 0ask →∞)

Theorem 1 is a consequence of the more general theorem,
wich is stated as follows.

Theorem 3. For any ε > 0 there exists a measurable
set E ⊂ [0, 1], with measure |E| > 1 − ε such that for
any f(x) ∈ L[0,1], some g(x) ∈ L[0,1], g(x) = f(x) on E
and a rearrangement {σf (k)}+∞k=−∞ (σf (−k) = −σf (k)) of
integers 0,±1,±2, ... can be found, such that

1) |cσf (k)(g)| > |cσf (k+1)(g)|; ∀k ≥ 0
2) ||Gm(g)|| ≤ 3||g|| ≤ 12||f || ; limm→∞ ||Gm(g)−

g|| = 0
3) ||Sm(g)|| ≤ 3||g|| ≤ 12||f || ; limm→∞ ||Sm(g)−

g|| = 0

With respect to the theorem 3 the following questions
remain open.

Question 1. Can one take modified function g(x) and
rearrangement {σf (k)} to satisfy conditions 1)-3) as well as

series
∞∑

k=−∞

cσf (k)(g)ei2πσ(k)x converges almost everywhere?

Question 2. Is it possible to choose the rearrangement
{σf (k)}+∞k=−∞ in the theorem 3 independent of f?

Question 3. Is it possible to choose the function g(x) in the
theorem 3 such that

|ck(g)| > |ck+1(g)|; ∀k ≥ 0

In connection with questions 2 and 3 we know the following
results

Theorem 4. Let T ≡ {ei2πkx}+∞k=−∞ the trigonometric
system.Then its elements can be rearranged so that the result-
ing system {ei2πσ(k)x}+∞k=−∞ has the folowing property:

for any 0 < ε < 1 there exists a measurable set E ⊂ [0, 1]
with measure |E| > 1 − ε, such that for any function
f(x) ∈ L1[0, 1] there exists a function g(x) ∈ L1[0, 1]
coinciding with f(x) on E and such that the sequence
{|c

σ(k)
(g)| , k ∈ spec(g)} is monotonically decreasing and the

series
∑∞
n=1 cσ(n)(g)ei2πσ(k)xconverges in L1[0, 1] ( where

spec(f)) is the support of ck(f), i.e. the set of integers where
ck(f) is non-zero).

Note that in 1939 Men’shov [21] proved the following
fundamental theorem.

Theorem (Men’shov’s C-strong property). For every
measurable, almost everywhere finite function f on [0, 2π]
and every ε > 0, there is a continuous function fε such that
|{x ∈ [0, 2π]; fε(x) 6= f(x)}| < ε and the Fourier series of
the function fε converges uniformly in [0, 2π].

In 1988 we were able to show that the trigonometric system
possesses the L-strong property for integrable functions: for
each ε > 0 there exists a (measurable) set E ⊂ [0, 2π] of
measure |E| > 2π − ε such that for each function f(x) ∈
L[0,2π] there exists a function g(x) ∈ L1

[0,2π] equal to f(x) on
E and with Fourier series convergent to g(x) in L1

[0,2π]- norm
(see [25]).

After Men’shov’s proof of the C-strong property, many
”correction” type theorems were proved for different systems.
We are not going to give a complete survey of all the research
done in this area. For details we refer to [22]-[27].

Remark. In the D. E. Men’shov’s above theorem, the
”singular” set e, where f(x) is changed, depends on f(x).

Whereas in the theorems 1 and 3 of this paper the ”singular”
set does not depend on f(x).

For q > 0, we put

||f ||G(lnq) =
∞∑
k=1

|ck(f)|2 lnq k

G(lnq) = {f(x) ∈ L2[0, 1]; with
∞∑
k=1

|ck(f)|2 lnq k <∞}.

and

G↘(lnq) = {f(x) ∈ L2[0, 1]; with
∞∑
k=1

|cσ(k)(f)|2 lnq k <∞},
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where {σ(k)}∞k=1 the permutation of natural numbers such
that |cσ(k)(f)| ≥ |cσ(k+1)(f)|, ∀k ≥ 1 and

||f ||G↘(lnq) =
∞∑
k=1

|cσ(k)(f)|2 lnq k.

In [28 ] it is proved that if
∑∞
k=1 |ck(f)|p <∞, p<2 then

hold Jachson inequality:

Rk(f) ≤
||f ||Bp
2
p − 1

1

k
2
p − 1

, (where ||f ||Bp =

( ∞∑
k=1

|ck(f)|p
) 1
p

and Rk(f) = o

(
1

k
2
p
−1

)
.

Conversely, if Rk(f) = O( 1

k
2
p
−1

) then
∞∑
k=1

|ck(f)|q < ∞,

for all p < q.
In this paper we prove

Theorem 5. If a function f(x) ∈ G↘(lnq), q > 1 then

Rk(f) ≤ ||f ||G↘
q − 1

1

(ln k − ln 2)q−1

and

Rk(f) = o

(
1

ln q−1k

)
Conversely, if Rk(f) = O

(
1

lnq k

)
then f(x) ∈ G(lnq) for any

p < q − 1.

II. PROOF OF THE THEOREMS

In the proof of Theorem 3 we will use the following
Lemma 1. For any ε > 0, any f(x) ∈ L[0, 1] with∫ 1

0
|f(x)|dx > 0 and any N0 > 1, there exists a measurable

set E ⊂ [0, 1], a function g(x), as well as a polynomial Q(x)

Q(x) =
N∑

|k|=N0

ake
i2πkx

and a rearrangement {σ(k)}Nk=N0
of natural nambers

N0, ..., N , which satisfy the conditions:
1) |E| > 1− ε,
2) g(x) = f(x), x ∈ E
3) 1

2

∫ 1

0
|f(x)|dx ≤

∫ 1

0
|g(x)|dx ≤ 3 ·

∫ 1

0
|f(x)|dx,

4)
[∫ 1

0
|Q(x)− g(x)|2dx

] 1
2

< ε,

5)
∑N
|k|=N0

|ak|2+ε < ε,
6) |aσ(k)| > |aσ(k+1)| > 0, ∀k ∈ (N0, N),

7) maxN0≤m≤N
∫ 1

0

∣∣∣∑m
|k|=N0

ake
i2πkx

∣∣∣ dx <

3
∫ 1

0
|f(x)|dx.

8) maxN0≤m≤N
∫ 1

0

∣∣∣∑m
|k|=N0

aσ(k)e
i2πσ(k)x

∣∣∣ dx <

3
∫ 1

0
|f(x)|dx

9) σ(−k) = −σ(k)

Proof. This lemma is proved analogously to lemma 2 of
[29].

A. Proof of Theorems 3 and 4

Let 0 < ε < 1. An application of lemma 1 with regard
to the sequence of trigonometric polynomials with rational
coefficients that we denote by

{fk(x)}∞k=1, (1)

leads to some sequences of functions {ḡk(x)}∞k=1 sets {Ek}
and polynomials

mn−1∑
|k|=mn−1

a
(n)
k ei2πkx = Q̄n(x) =

=

mn−1∑
|k|=mn−1

a
(n)
σn(k)e

i2πσn(k)x , m0 = 1 , a
(n)
−k = ā

(n)
k ; (2)

where {σn(k)}mn−1
k=mn−1

(σn(−k) = −σn(k)) is some rear-
rangement of natural numbers mn−1, mn−1+1, ...,mn−1 (for
any fixed n). Besides, the following conditions are satisfied:

gn(x) = fn(x), x ∈ En, (3)

|En| > 1− ε4−8(n+2), (4)

1

2

∫ 1

0

|fn(x)|dx <
∫ 1

0

|gn(x)|dx < 3 ·
∫ 1

0

|fn(x)|dx, (5)

(∫ 1

0

∣∣Qn(x)− gn(x)
∣∣2 dx)1/2

< 4−8(n+2), (6)

max
mn−1≤N<mn

∫ 1

0

∣∣∣∣∣∣
N∑

k=mn−1

a
(n)
σn(k)e

i2πσn(k)x

∣∣∣∣∣∣ ≤ 3

∫ 1

0

|fn(x)|dx,

(7)

max
mn−1≤N<mn

∫ 1

0

N∑
k=mn−1

a
(n)
k ei2πkxdx ≤ 3

∫ 1

0

|fn(x)|dx,

(8)

|a(n)
σn(k)| > |a

(n)
σn(k+1)| > |a

(n+1)
σn+1(mn)| > 0,

∀k ∈ [mn−1,mn − 1], ∀n ≥ 1. (9)

mn∑
|k|=mn−1

∣∣∣a(n)
k

∣∣∣2+4−8(n+2)

< 4−8(n+2). (10)

Taking

E =
∞⋂
n=1

En, (11)

we have |E| > 1− ε. (see (4)).
Let f(x) ∈ L1[0, 1]. Then by (1) one can easily choose a

subsequence {fkn(x)}∞n=1 such that
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lim
N→∞

∫ 1

0

∣∣∣∣∣
N∑
n=1

fkn(x)− f(x)

∣∣∣∣∣ dx = 0, (12)

∫ 1

0

|fkn(x)| dx ≤ ε̄ · 4−8(n+2), n ≥ 2. (13)

where ε̄ = min{ ε2 ; ||f ||} and fk1(x) is of the form

mν1−1∑
|k|=0

bke
i2πkx = fk1(x) =

mν1−1∑
|k|=0

bσ(k)e
i2πσ(k)x;

|bk| > |bk+1| > 0, ∀|k| ∈ [1,mν1 ], (14)

and σ(|k|)- is some rearrangement of natural numbers
1, 2, ...,mν1 − 1 (σ(−k) = −σ(k)).

We evidently have∫ 1

0

|f(x)− fk1(x)| dx < ε

2
. (15)

Now set

ak =

{
bk, k ∈ [1,mν1);

a
(n)
k , k ∈ [mn−1,mn), n ≥ ν1 + 1.

(16)

σ(k) =

{
σ(k), k ∈ [1,mν1);

σn(k), k ∈ [mn−1,mn), ∀n ≥ ν1 + 1.
(17)

g1(x) ≡ Q1(x) = fk1(x) =

mν1−1∑
|k|=0

aσ(k)e
i2πσ(k)x. (18)

Suppose we already have determined the numbers ν1 <
... < νq−1, mν1 − 1 = l(1) < l(2) < ... < l(q −
1), {bl(k)}q−1

k=1, the functions gn(x), fνn(x), 1 ≤ n ≤ q− 1
and the polynomials

Mn∑
|k|=Mn

ake
i2πkx = Qn(x) =

Mn∑
|k|=Mn

aσ(k)e
i2πσ(k)x,

Mn = mνn−1, Mn = mνn − 1, M1 > N1

satisfying the conditions:

gn(x) = fkn(x), x ∈ Eνn , 1 ≤ n ≤ q − 1,∫ 1

0

|gn(x)|dx < 4−3n · ε̄ ; 1 ≤ n ≤ q − 1

∫ 1

0

∣∣∣∣∣
n∑
k=2

[(
Qk(x) + bl(k)e

i2πσ(l(k))x
)
− gk(x)

]∣∣∣∣∣ dx <
< 4−8(n+1), 1 ≤ n ≤ q − 1, (19)

l(n) = min{k ∈ N : k /∈ [1,mν1 ]∪

∪

n−1⋃
j=2

[Mj ,M j ]

 ∪ {l(s)}n−1
s=1 }},

max
Mn≤N<Mn

∫ 1

0

∣∣∣∣∣
N∑

k=Mn

aσ(k)e
i2πσ(k)x

∣∣∣∣∣ dx < 4−3n, 1 ≤ n ≤ q−1.

max
Mn≤N<Mn

∫ 1

0

∣∣∣∣∣
N∑

k=Mn

ake
i2πkx

∣∣∣∣∣ dx < 4−3n, 1 ≤ n ≤ q − 1.

|aMn
| > |bl(n)| > |aMn+1

|

We choose a natural number νq and a function fνq (x) from
the sequence (1) such that∫ 1

0

∣∣∣∣fνq (x)−
(
fkq (x)−

q−1∑
n=2

[(
Qn(x) + bl(n)e

i2πσ(l(n))x

)
−

−gn(x)

])∣∣∣∣ dx < 4−8(q+2). (20)

|a(Mq)| < |bl(q−1)|, where Mq = mνq−1 (21)

(see (10) and (16)). Then by (13) and (19) we have

∫ 1

0

∣∣∣∣fkq (x)−
q−1∑
n=2

[(
Qn(x) + bl(n)e

i2πσ(l(n))x

)
−

−gn(x)

]∣∣∣∣dx < 4−8q−1.

Therefore by (20) we have∫ 1

0

∣∣fνq (x)
∣∣ dx < 4−8q. (22)

We define

Qq(x) = Qνq (x) =

Mq∑
k=Mq

ake
i2πkx,

Mq = mνq − 1, Mq = mνq−1, (23)

gq(x) = fkq (x) + [gνq (x)− fνq (x)], (24)

l(q) = min{k ∈ N : k /∈ [1,mν1 ]∪

∪

(
q−1⋃
n=2

[Mn,Mn]

)
∪ {l(s)}q−1

s=1}}, (25)

bl(q) = min

(
4−8(q+3);

1

2
|aMq

|
)
. (26)

Then in view of (3)-(7), (16), (19)-(26) we get

gq(x) = fkq (x), x ∈ Eνq , (27)

∫ 1

0

|gq(x)|dx ≤
∫ 1

0

∣∣∣∣fνq (x)−
(
fkq (x)−

q−1∑
j=2

[(
Qj(x)+
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+bl(j)e
i2πσ(l(j))x

)
− gj(x)

])∣∣∣∣dx+

∫ 1

0

|gνq (x)|dx+

+

∫ 1

0

∣∣∣∣∣∣
q−1∑
j=2

[(
Qj(x) + bl(j)e

i2πσ(l(j))x
)
− gj(x)

]∣∣∣∣∣∣ dx < 4−3q.

(28)

∫ 1

0

∣∣∣∣∣∣
q−1∑
j=2

[(
Qj(x) + bl(j)e

i2πσ(l(j)x
)
− gj(x)

]∣∣∣∣∣∣ dx ≤
≤
∫ 1

0

∣∣∣∣fνq (x)−
(
fkq (x)−

q∑
j=2

[(
Qj(x)+ bl(j) ·ei2πσ(l(j))x

)

−gj(x)

])∣∣∣∣dx++|bl(q)|+
∫ 1

0

|Qνq (x)−gνq (x)|dx < 4−8(q+1),

(29)

max
Mq≤N<Mq

∫ 1

0

∣∣∣∣∣∣
N∑

|k|=Mq

aσ(k)e
i2πσ(k)x

∣∣∣∣∣∣ dx ≤
≤ 3 ·

∫ 1

0

|fνq (x)|dx < 4−3q, (30)

max
Mq≤N<Mq

∫ 1

0

∣∣∣∣∣∣
N∑

|k|=Mq

ake
i2πkx

∣∣∣∣∣∣ dx ≤ 3·
∫ 1

0

|fνq (x)|dx < 4−3q,

(31)

|aσ(Mq
| > ... > |aσ(k)| > ... > |aMq

| >

> |bl(q)| > |aMq+1
|, ∀q ≥ 1. (32)

Clearly, we can use induction to determine a sequence
{gq(x)} of functions, numbers {l(q)}∞q=2, {bl(q)}∞q=2 and a
sequence {Qq(x)} of polynomials satisfying the conditions
(25)- (32) for all q ≥ 1.

Taking into account the choice of {σ(k)}∞k=1,
{[Mq,Mq]}∞q=2 and {l(q)}∞q=2 (see (17), (23), (25)) we
obtain, that the sequence of natural numbers

σ(1)...σ(mν1 − 1); l(1), σ(M2)...σ(M2);

; l(2), ..., l(n− 1), σ(Mn)...σ(k)...σ(Mn); l(n).... (33)

is some rearrangement of sequence 1, 2, ..., n, ....
We may write the sequence (33) in the form

σ◦f (1), σ◦f (2), ..., σ◦f (k), ...

We define function g(x) and series
∞∑
k=1

dσ◦f (k)e
i2πσ◦f (k)x in the

following form

g(x) =

∞∑
k=1

gk(x); g1(x) = Q1(x) = fk1(x) =

=

mν1−1∑
k=1

ake
i2πσ(k)x, (34)

∞∑
k=1

dσ◦f (k)e
i2πσ◦f (k)x =

mν1−1∑
k=1

aσ(k)e
i2πσ(k)x+

+
∞∑
n=2

 Mn∑
|k|=Mn

aσ(k)e
i2πσ(k)x + bl(n)e

i2πσ(l(n))x

 , (35)

where {dσ◦f (k)}∞k=1-is a sequence

aσ(1)...aσ(mν1−1), bl(1), aσ(M2
...a

σ(M2)
; bl(2), ..., bl(n−1),

, aσ(Mn).aσ(k)..aσ(Mn
; bl(n); aσ(Mn+1)...

From this and from (11), (12), (21), (26), (27), (32)-(35)
follows that

|dσ◦f (k)| > |dσ◦f (k+1)|, ∀k ≥ 1,

∞∑
k=1

|dk|r <∞, ∀r > 2,

g(x) ∈ L1
[0,1], g(x) = f(x), x ∈ E.

Let N > M1 be an arbitrary natural number. Then for some
natural q we have

Nq ≤ N < Nq+1,

where

Nq = M1 + 1 +

q∑
k=2

[Mk −Mk + 2] ∀q ≥ 2.

The relations (26),(28)-(35) imply that∫ 1

0

∣∣∣∣∣
N∑
k=1

dσ◦f (k)e
i2πσ◦f (k)x − g(x)

∣∣∣∣∣ dx ≤
≤
∫ 1

0

∣∣∣∣∣
q−1∑
γ=2

[(
Qj(x) + bl(j)e

i2πσ(l(j))x
)
− gj(x)

]∣∣∣∣∣ dx+

+
∞∑
s=q

∫ 1

0

|gs(x)|dx+ max
Mq≤m≤Mq

∫ 1

0

∣∣∣∣∣∣
m∑

|k|=Mq

aσ(k)e
i2πσ(k)x

∣∣∣∣∣∣ dx+

+|bl(q)| < 2−q.

||GN (g)||1 =

∫ 1

0

∣∣∣∣∣
N∑
k=1

cσ◦f (k)e
i2πσ◦f (k)x

∣∣∣∣∣ dx
≤
∞∑
n=1

 max
Mn≤N≤Mn

∫ 1

0

∣∣∣∣∣∣
N∑

|k|=Mn

aσ(k)e
i2πσ(k)x

∣∣∣∣∣∣ dx
+

+
∞∑
k=1

|bp(k)| ≤ 2

∫ 1

0

|g1(x)|dx+ ε̄
∞∑
n=1

4−n

≤ 3

∫ 1

0

|g(x)|dx ≤ 12 ·
∫ 1

0

|f(x)|dx .
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Similarly, one can show that

||SN (g)− g|| =
∫ 1

0

∣∣∣∣∣
N∑
k=1

dke
i2πkx − g(x)

∣∣∣∣∣ dx < 2−q.

||SN (g)|| ≤ 3

∫ 1

0

|g(x)|dx ≤ 12

∫ 1

0

|f(x)|dx .

Consequently

dσ◦f (k) =

∫ 1

0

g(x)e−2πσ◦f (k)xdx;

(dk =

∫ 1

0

g(x)e−2πkxdx = ck(g))

Theorem 3 is proved.

Now we will prove that the system {ei2πσ(k)x}+∞k=−∞ and
set E (see (11) and (17)) satisfy the conditions of theorem 4.

Repeating the arguments in the proof of theorem 3 for each
f(x) ∈ L1[0, 1] we can use induction to determine a sequence
of polynomials {Qn(x)} from the sequence (2) of the form

Qn(x) =

mνn−1∑
|k|=mνn−1

aσ(k)e
i2πσ(k)x, |aσ(k)| > |aσ(k+1)| > 0,

k ∈ [mνn−1,mνn), n ≥ 1, νn ↗

and a function g(x) ∈ L1[0, 1] coinciding with f(x) on E
satisfying the conditions

∫ 1

0

∣∣∣∣∣∣
j∑

n=1

(

mνn−1∑
|k|=mνn−1

aσ(k)e
i2πσ(k)x)− g(x)

∣∣∣∣∣∣ dx ≤ 2−2j , j > 1

max
mνn−1≤m<mνn

∫ 1

0

∣∣∣∣∣∣
m∑

|k|=mνn−1

aσ(k)e
i2πσ(k)x)− g(x)

∣∣∣∣∣∣ dx ≤
≤ 2−n, n > 1

Theorem 4 is proved.

B. Proof of Theorems 2 and 5

We need the following elementary result:

Lemma 2. Let m be an arbitrary natural number. Given
any finite sequence {xk}nk=1 of non negative integers and a
monotonically increasing finite sequence {yk}nk=1. Then

m∑
k=1

xσ(k)yk ≤
m∑
k=1

xkyk,

where {σ(k)}mk=1 is a permutation of positive integers such
that xσ(1) ≥ xσ(2) ≥ ... ≥ xσ(m).

Proof Let m = 2 and let x2 ≥ x1 and y1 < y2. We have

0 ≤ (x2 − x1)(y2 − y1) = x2y2 + x1y1 − (x2y1 + x1y2),

hence
2∑
k=1

xσ(k)yk = xσ(1)y1 + xσ(2)y2 = x2y1 + x1y2 ≤
2∑
k=1

xkyk.

It is not hard to see that using the mathematical induction
methods we can obtain inequality a) for each natural m.

Lemma 3. Given any sequences {xk}∞k=1 and {yk}∞k=1,
with

xk ≥ 0, and 0 < y1 < y2 < ... < yk < ....

then ∞∑
k=1

xnkyk ≤
∞∑
k=1

xkyk,

where {σ(k)}∞k=1 is a permutation of natural numbers 1, 2, ...,
such that {xσ(k)} ↘.

Proof. We may assume that
∞∑
k=1

xkyk <∞.

Let {σ(k)}∞k=1 be a permutation of natural numbers 1, 2, ...
such that

xσ(1) ≥ xσ(2) ≥ ... ≥ xσ(k) ≥ ...

For any natural number s we set

Ns = max{σ(k); 1 ≤ k ≤ s}.

Using lemma 2, with m = Ns, for {xk}Nsk=1 and {yk}Nsk=1 we
get

Ns∑
k=1

xσ(k)yk ≤
Ns∑
k=1

xkyk ≤
∞∑
k=1

xkyk.

Since xk ≥ 0 and yk > 0 we obtain
s∑

k=1

xσ(k)yk ≤
∞∑
k=1

xkyk, for all s ≥ 1,

what completes the proof of lemma 3.

From lemma 3 we obtain the following
Lemma 4. G(lnq) ⊂ G↘(lnq) for all q > 0, and ||f ||G↘ ≤

||f ||G.

Proof . Using lemma 3 with xk = |ck(f)|2 and yk =
lnq k, q > 0, ∀k ≥ 1 we have if f(x) ∈ G(lnq) then
f(x) ∈ G↘(lnq) and ||f ||G↘ ≤ ||f ||G (see definitions G(lnq),
G↘(lnq)).

It is not hard to see that there exists a function f0(x) ∈
G↘(lnq) but f0(x) /∈ G(lnq), q > 0.

Proof of Theorem 5. Let f(x) ∈ G↘(lnq), q > 0.
From the definition of G↘(lnq) we get ||f ||G↘ =
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∞∑
k=1

|cσ(k)(f)|2 lnq k < ∞, where {σ(k)} is a permutation of

the natural numbers 1, 2, ..., which

|cσ(k)(f)| ≥ |cσ(k+1)(f)| ≥ ....

We put

λm(f) =
∞∑
k=m

|cσ(k)(f)|2 lnq k.

From this we have

k|cσ(k)(f)|2 lnq k ≤
2k−1∑
s=k

|cσ(s)(f)|2 lnq s < λk(f).

Hence
|cσ(k+1)(f)|2 ≤ |cσ(k)(f)|2 ≤ λk(f)

k lnq k
.

From an approximation’s error we obtain

R2
k(f) =

∞∑
s=k

|cσ(s)(f)|2 ≤ λ[ k2 ](f)
∑
s=[ k2 ]

1

s lnq s
≤

≤ λ[ k2 ](f)

∫ ∞
[ k2 ]

dx

x lnq x
≤ λ[ k2 ](f)

1

(q − 1)(ln[k2 ])q−1
.

Since lim
k→∞

λk(f) = 0 and λk(f) ≤ ||f ||G↘(ln q).
We get

R2
k(f) = o

(
1

lnq−1 k

)
,

R2
k(f) ≤ ||f ||G↘

q − 1

1

(ln k − ln 2)q−1
,∀k > 2.

Conversely suppose that there exists C > 0 such that

R2
k(f) ≤ C 1

lnq k
, q > 0, k > 1.

Since

R2
k(f) =

∞∑
s=k+1

|cσ(s)(f)|2 ≥
2k∑

s=k+1

|cσ(s)(f)|2 ≥ k|cσ(2k)(f)|2,

then

|cσ(2k+1)(f)|2 ≤ |cσ(2k)(f)|2 < C
1

k(ln k)q
.

Hence, if p < q − 1 (q − p > 1)
∞∑
k=1

|cσ(k)(f)|2(ln k)p ≤ 2C
∞∑
k=2

1

k(ln k)q−p
<∞,

which completes the proof of Theorem 5.

In the proof of Theorem 2 we will use the following theorem
of P.L. Ul‘yanov [30].

Let a ω(t) be a nonnegative function, increasing in (0, 1]

with
∫ 1

0
α(x)dx=∞ and let for an constant C and for all δ ∈

(0, 1
4 ]

1
δ2

∫ δ
0
x2α(x)dx ≤ C

∫ 1

δ
α(x)dx,

1

δ2

∫ δ

0

x2α(x)dx ≤ C
∫ 1

δ

α(x)dx,

Then the condition∫ 1

0

∫ 1

0

[f(x+ t)− f(x− t)]2α(x)dx <∞,

is equivalent to
∞∑
k=1

|ck(f)|2ω(k) <∞

From this theorem we obtain that the condition∫ 1

0

∫ 1

0

[f(x+ t)− f(x− t)]2

t
(ln

1

t
)δdx <∞, δ > 0,

is equivalent to
∞∑
k=1

|ck(f)|2(ln k)
1+δ

<∞

Hence and from Lemma 4 and Theorem 5 (with q = 1+δ)
we have the proof of Theorem 2.
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