On the m-term best approximation of functions and greedy algorithm

Martin Grigoryan

Abstract

It is proved that the trigonometric system possesses the L^{1}-strong and greedy property. Also it is described the class of Lebesgue integrable functions such that the error between function and m-term best approximant with respect to the trigonometric system has the following behavior $o\left(\frac{1}{\ln ^{\delta} m}\right), \delta>0$.

Keywords-m-term best approximant, trigonometric system, greedy algorithm.

I. Introduction

Linear approximations project the function on m vectors selected a priori. The approximation can be made more precisely by choosing the m orthogonal vectors depending on the signal properties.

Non-linear algorithms outperform linear projections by approximating each function with vectors selected adaptively within a basis. Let $\left\{\varphi_{n}(x)\right\}$ be an orthogonal basis in $L^{2}[0,1]$, and let $\left\{f_{m}(x)\right\}$ be the projection of f over m vectors whose indices are in A_{m}.

$$
\begin{aligned}
& f_{m}(x)=\sum_{k \in A_{m}}<f, \varphi_{k}>\varphi_{k}(x), \text { where } \\
& \quad<f, \varphi_{k}>=d_{k}(f):=\int_{0}^{1} f(t) \varphi_{k}(t) d t
\end{aligned}
$$

The approximation error have the form

$$
\begin{gathered}
r_{m}(f):=\left\|f-f_{m}\right\|_{2}=\left[\int_{0}^{1}\left|f(x)-f_{m}(x)\right|^{2} d x\right]^{\frac{1}{2}}= \\
=\left(\sum_{k \in A_{m}}\left|d_{k}(f)\right|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

To minimize this error, the indices in A_{m} must correspond to the m vectors having the largest inner product amplitude $\left|<f, \varphi_{k}>\right|$. They are the vectors that best correlate $f(x)$. So they can be interpreted as the "main" features of $f(x)$. The resulting $r_{m}(f)$ is necessarily smaller than the error of the linear approximation, which selects the m approximation vectors independently of $f(x)$. Let us sort $\left\{\left|d_{k}(f)\right|\right\}_{k \geq 1}$ in decreasing order

$$
\left|d_{\sigma(k)}(f)\right| \geq\left|d_{\sigma(k+1)}(f)\right|, k=1,2, \ldots ;
$$

M. Grigoryan is with the Department of physics, chair of Higher Mathematics, Yerevan State University, Yerevan, Armenia 0025 e-mail: gmarting@ysu.am

The best non-linear approximation is

$$
f_{m}^{b e s t}(x)=\sum_{k=1}^{m} d_{\sigma(k)}(f) \varphi_{\sigma(k)}(x)
$$

For any $f(x) \in L^{1}[0,1]$ and $m=1,2, \ldots$ we put

$$
\begin{gathered}
c_{k}(f)=\int_{0}^{1} f(t) e^{-i 2 \pi k t} d t, k=0, \pm 1, \pm 2, \ldots, \\
S_{m}(f)=\sum_{|k| \leq m} c_{k}(f) e^{i 2 \pi k x}
\end{gathered}
$$

We call a permutation $\sigma=\{\sigma(k)\}_{k=1}^{\infty}$ of natural numbers decreasing and write $\sigma \in D(f)$, if

$$
\left|c_{\sigma(k)}(f)\right| \geq\left|c_{\sigma(k+1)}(f)\right|, \quad k=1,2, \ldots ; \sigma(-k)=-\sigma(k)
$$

In the case of strict inequalities here $D(f)$ consists of only one permutation. We define the m-th greedy approximant of f with respect to the trigonometric system $T \equiv\left\{e^{i 2 \pi k x}\right\}_{k=-\infty}^{+\infty}$ corresponding to a permutation $\sigma \in D(f)$ by formula

$$
G_{m}(f)=G_{m}(f, T, \sigma)=\sum_{1 \leq|k| \leq m} c_{\sigma(k)}(f) e^{i 2 \pi \sigma(k) x}
$$

This nonlinear method of approximation is known as greedy algorythm (see for example [1], [2]).

The greedy algorithm of a function $f \in L_{[0,1]}$ with respect to the trigonometric system is said to converge to f in the norm of $L^{1}[0,1]$ if

$$
\lim _{m \rightarrow \infty} \int_{0}^{1}\left|G_{m}(f, T, \sigma)-f(x)\right| d x=0
$$

for some $\sigma \in D(f)$. For more on that algorithm, see [3]-[20].
The above mentioned definitions are given not in the most general form and only in the generality, in which they will be applied in the present paper.

Note that $G_{m}(x, f, T)$ gives the best m -term approximation in $L^{2}[0,1]-$ norm

$$
\begin{gathered}
\left\|G_{m}(f, \Psi, \sigma)-f\right\|_{2}=R_{m}(f)=\inf _{|n| \in \Lambda}\left\|\sum a_{n} e^{i 2 \pi k x}-f\right\|_{2}= \\
=\left(\sum_{n=m+1}^{\infty}\left|c_{\sigma(n)}(f)\right|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

where inf is taken over coefficients a_{n} and sets of indices
Λ with cardinality $|\Lambda|=m$, and $\sigma=\{\sigma(n)\}_{n=1}^{\infty} \in D(f)$

It is clear that for each $f(x) \in L^{2}[0,1], R_{m}(f) \rightarrow$

0 as $m \rightarrow \infty$.
V.N.Temlyakov [3] proved the existance of a function $f_{0}(x) \in L_{[0,1]}$, such that

$$
\overline{\lim _{m \rightarrow \infty}} \int_{0}^{1}\left|G_{m}\left(f_{o}, T, \sigma\right)\right| d x=+\infty .
$$

In this paper we prove the following results.
Theorem 1. (L-strong and greedy property). For any $\epsilon>0$ there exists a measurable set $E \subset[0,1]$, with measure $|E|>1-\epsilon$ such that for any function $f(x) \in L_{[0,1]}$ one can find a function $g(x) \in L[0,1]$ equal to $f(x)$ on E such that its Fourier series and greedy algorithm with respect to the trigonometric system converges to $g(x)$ in the $L_{[0,1]^{-}}$norm.

Theorem 2.Let $f \in L^{2}[0,1]$ be a periodic function with period 1 and let $\delta>0$, if

$$
\int_{0}^{1} \int_{0}^{1} \frac{[f(x+t)-f(x-t)]^{2}}{t}\left(\ln \frac{1}{t}\right)^{\delta} d x<\infty
$$

then

$$
\begin{gathered}
R_{k}^{2}(f)=\left(\left\|G_{m}(f, \Psi, \sigma)-f\right\|_{2}\right)^{2} \leq \\
\leq\left(\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{2}(\ln k)^{1+\delta}\right) \frac{1}{(\ln k-\ln 2)^{\delta}}
\end{gathered}
$$

and

$$
\left.\left.R_{k}^{2}(f)=o\left(\frac{1}{\ln ^{\delta} k}\right),\left(R_{k}^{2}(f) \ln k\right)^{\delta}\right) \rightarrow 0 a s k \rightarrow \infty\right)
$$

Theorem 1 is a consequence of the more general theorem, wich is stated as follows.

Theorem 3. For any $\epsilon>0$ there exists a measurable set $E \subset[0,1]$, with measure $|E|>1-\epsilon$ such that for any $f(x) \in L_{[0,1]}$, some $g(x) \in L_{[0,1]}, g(x)=f(x)$ on E and a rearrangement $\left\{\sigma_{f}(k)\right\}_{k=-\infty}^{+\infty}\left(\sigma_{f}(-k)=-\sigma_{f}(k)\right)$ of integers $0, \pm 1, \pm 2, \ldots$ can be found, such that

1) $\left|c_{\sigma_{f}(k)}(g)\right|>\left|c_{\sigma_{f}(k+1)}(g)\right| ; \quad \forall k \geq 0$
2) $\left\|G_{m}(g)\right\| \leq 3\|g\| \leq 12\|f\| \quad ; \quad \lim _{m \rightarrow \infty} \| G_{m}(g)-$ $g \|=0$
3) $\left\|S_{m}(g)\right\| \leq 3\|g\| \leq 12\|f\| \quad$; $\quad \lim _{m \rightarrow \infty} \| S_{m}(g)-$ $g \|=0$

With respect to the theorem 3 the following questions remain open.

Question 1. Can one take modified function $g(x)$ and rearrangement $\left\{\sigma_{f}(k)\right\}$ to satisfy conditions 1$)-3$) as well as series $\sum_{k=-\infty}^{\infty} c_{\sigma_{f}(k)}(g) e^{i 2 \pi \sigma(k) x}$ converges almost everywhere?

Question 2. Is it possible to choose the rearrangement $\left\{\sigma_{f}(k)\right\}_{k=-\infty}^{+\infty}$ in the theorem 3 independent of f ?

Question 3. Is it possible to choose the function $g(x)$ in the theorem 3 such that

$$
\left|c_{k}(g)\right|>\left|c_{k+1}(g)\right| ; \quad \forall k \geq 0
$$

In connection with questions 2 and 3 we know the following results
Theorem 4. Let $T \equiv\left\{e^{i 2 \pi k x}\right\}_{k=-\infty}^{+\infty}$ the trigonometric system. Then its elements can be rearranged so that the resulting system $\left\{e^{i 2 \pi \sigma(k) x}\right\}_{k=-\infty}^{+\infty}$ has the folowing property:
for any $0<\epsilon<1$ there exists a measurable set $E \subset[0,1]$ with measure $|E|>1-\epsilon$, such that for any function $f(x) \in L^{1}[0,1]$ there exists a function $g(x) \in L^{1}[0,1]$ coinciding with $f(x)$ on E and such that the sequence $\left\{\left|c_{\sigma(k)}(g)\right|, k \in \operatorname{spec}(g)\right\}$ is monotonically decreasing and the series $\sum_{n=1}^{\infty} c_{\sigma(n)}(g) e^{i 2 \pi \sigma(k) x}$ converges in $L^{1}[0,1]$ (where $\operatorname{spec}(f))$ is the support of $c_{k}(f)$, i.e. the set of integers where $c_{k}(f)$ is non-zero).

Note that in 1939 Men'shov [21] proved the following fundamental theorem.

Theorem (Men'shov's C-strong property). For every measurable, almost everywhere finite function f on $[0,2 \pi]$ and every $\epsilon>0$, there is a continuous function f_{ϵ} such that $\left|\left\{x \in[0,2 \pi] ; f_{\epsilon}(x) \neq f(x)\right\}\right|<\epsilon$ and the Fourier series of the function f_{ϵ} converges uniformly in $[0,2 \pi]$.

In 1988 we were able to show that the trigonometric system possesses the L-strong property for integrable functions: for each $\epsilon>0$ there exists a (measurable) set $E \subset[0,2 \pi]$ of measure $|E|>2 \pi-\epsilon$ such that for each function $f(x) \in$ $L_{[0,2 \pi]}$ there exists a function $g(x) \in L_{[0,2 \pi]}^{1}$ equal to $f(x)$ on E and with Fourier series convergent to $g(x)$ in $L_{[0,2 \pi]^{-}}^{1}$ norm (see [25]).
After Men'shov's proof of the C-strong property, many "correction" type theorems were proved for different systems. We are not going to give a complete survey of all the research done in this area. For details we refer to [22]-[27].

Remark. In the D. E. Men'shov's above theorem, the "singular" set e, where $f(x)$ is changed, depends on $f(x)$.

Whereas in the theorems 1 and 3 of this paper the "singular" set does not depend on $f(x)$.

For $q>0$, we put

$$
\|f\|_{G\left(\ln ^{q}\right)}=\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{2} \ln ^{q} k
$$

$G\left(\ln ^{q}\right)=\left\{f(x) \in L^{2}[0,1] ;\right.$ with $\left.\quad \sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{2} \ln ^{q} k<\infty\right\}$.
and
$G^{\searrow}\left(\ln ^{q}\right)=\left\{f(x) \in L^{2}[0,1] ;\right.$ with $\left.\sum_{k=1}^{\infty}\left|c_{\sigma(k)}(f)\right|^{2} \ln ^{q} k<\infty\right\}$,
where $\{\sigma(k)\}_{k=1}^{\infty}$ the permutation of natural numbers such that $\left|c_{\sigma(k)}(f)\right| \geq\left|c_{\sigma(k+1)}(f)\right|, \forall k \geq 1$ and

$$
\|f\|_{G \searrow\left(\ln ^{q}\right)}=\sum_{k=1}^{\infty}\left|c_{\sigma(k)}(f)\right|^{2} \ln ^{q} k .
$$

In [28] it is proved that if $\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{p}<\infty, \mathrm{p}<2$ then hold Jachson inequality:
$R_{k}(f) \leq \frac{\|f\|_{B_{p}}}{\frac{2}{p}-1} \frac{1}{k^{\frac{2}{p}}-1}, \quad\left(\right.$ where $\|f\|_{B_{p}}=\left(\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{p}\right)^{\frac{1}{p}}$
and $R_{k}(f)=o\left(\frac{1}{k^{\frac{2}{p}-1}}\right)$.
Conversely, if $R_{k}(f)=O\left(\frac{1}{k^{\frac{2}{p}-1}}\right)$ then $\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{q}<\infty$, for all $p<q$.

In this paper we prove
Theorem 5. If a function $f(x) \in G \searrow\left(\ln ^{q}\right), \quad q>1$ then

$$
R_{k}(f) \leq \frac{\|f\|_{G \searrow}}{q-1} \frac{1}{(\ln k-\ln 2)^{q-1}}
$$

and

$$
R_{k}(f)=o\left(\frac{1}{\ln ^{q-1} k}\right)
$$

Conversely, if $R_{k}(f)=O\left(\frac{1}{\ln ^{q} k}\right)$ then $f(x) \in G\left(\ln ^{q}\right)$ for any $p<q-1$.

II. Proof of the Theorems

In the proof of Theorem 3 we will use the following
Lemma 1. For any $\epsilon>0$, any $f(x) \in L[0,1]$ with $\int_{0}^{1}|f(x)| d x>0$ and any $N_{0}>1$, there exists a measurable set $E \subset[0,1]$, a function $g(x)$, as well as a polynomial $Q(x)$

$$
Q(x)=\sum_{|k|=N_{0}}^{N} a_{k} e^{i 2 \pi k x}
$$

and a rearrangement $\{\sigma(k)\}_{k=N_{0}}^{N}$ of natural nambers N_{0}, \ldots, N, which satisfy the conditions:

1) $|E|>1-\epsilon$,
2) $g(x)=f(x), \quad x \in E$
3) $\frac{1}{2} \int_{0}^{1}|f(x)| d x \leq \int_{0}^{1}|g(x)| d x \leq 3 \cdot \int_{0}^{1}|f(x)| d x$,
4) $\left[\int_{0}^{1}|Q(x)-g(x)|^{2} d x\right]^{\frac{1}{2}}<\epsilon$,
5) $\sum_{|k|=N_{0}}^{N}\left|a_{k}\right|^{2+\epsilon}<\epsilon$,
6) $\left|a_{\sigma(k)}\right|>\left|a_{\sigma(k+1)}\right|>0, \forall k \in\left(N_{0}, N\right)$,
7) $\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{|k|=N_{0}}^{m} a_{k} e^{i 2 \pi k x}\right| d x$
$3 \int_{0}^{1}|f(x)| d x$.
8) $\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{|k|=N_{0}}^{m} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right| d x$
$3 \int_{0}^{1}|f(x)| d x$
9) $\sigma(-k)=-\sigma(k)$

Proof. This lemma is proved analogously to lemma 2 of [29].

$$
<
$$

A. Proof of Theorems 3 and 4

Let $0<\epsilon<1$. An application of lemma 1 with regard to the sequence of trigonometric polynomials with rational coefficients that we denote by

$$
\begin{equation*}
\left\{f_{k}(x)\right\}_{k=1}^{\infty} \tag{1}
\end{equation*}
$$

leads to some sequences of functions $\left\{\bar{g}_{k}(x)\right\}_{k=1}^{\infty}$ sets $\left\{E_{k}\right\}$ and polynomials

$$
\begin{gather*}
\sum_{|k|=m_{n-1}}^{m_{n}-1} a_{k}^{(n)} e^{i 2 \pi k x}=\bar{Q}_{n}(x)= \\
=\sum_{|k|=m_{n-1}}^{m_{n}-1} a_{\sigma_{n}(k)}^{(n)} e^{i 2 \pi \sigma_{n}(k) x}, m_{0}=1, a_{-k}^{(n)}=\bar{a}_{k}^{(n)} ; \tag{2}
\end{gather*}
$$

where $\left\{\sigma_{n}(k)\right\}_{k=m_{n-1}}^{m_{n}-1}\left(\sigma_{n}(-k)=-\sigma_{n}(k)\right)$ is some rearrangement of natural numbers $m_{n-1}, m_{n-1}+1, \ldots, m_{n}-1$ (for any fixed n). Besides, the following conditions are satisfied:

$$
\begin{equation*}
\bar{g}_{n}(x)=f_{n}(x), \quad x \in E_{n} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|E_{n}\right|>1-\epsilon 4^{-8(n+2)} \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\frac{1}{2} \int_{0}^{1}\left|f_{n}(x)\right| d x<\int_{0}^{1}\left|\bar{g}_{n}(x)\right| d x<3 \cdot \int_{0}^{1}\left|f_{n}(x)\right| d x \\
\left(\int_{0}^{1}\left|\bar{Q}_{n}(x)-\bar{g}_{n}(x)\right|^{2} d x\right)^{1 / 2}<4^{-8(n+2)} \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\max _{m_{n-1} \leq N<m_{n}} \int_{0}^{1}\left|\sum_{k=m_{n-1}}^{N} a_{\sigma_{n}(k)}^{(n)} e^{i 2 \pi \sigma_{n}(k) x}\right| \leq 3 \int_{0}^{1}\left|f_{n}(x)\right| d x \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\max _{m_{n-1} \leq N<m_{n}} \int_{0}^{1} \sum_{k=m_{n-1}}^{N} a_{k}^{(n)} e^{i 2 \pi k x} d x \leq 3 \int_{0}^{1}\left|f_{n}(x)\right| d x \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
\left|a_{\sigma_{n}(k)}^{(n)}\right|>\left|a_{\sigma_{n}(k+1)}^{(n)}\right|>\left|a_{\sigma_{n+1}\left(m_{n}\right)}^{(n+1)}\right|>0 \\
\forall k \in\left[m_{n-1}, m_{n}-1\right], \quad \forall n \geq 1 \tag{9}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{|k|=m_{n-1}}^{m_{n}}\left|a_{k}^{(n)}\right|^{2+4^{-8(n+2)}}<4^{-8(n+2)} \tag{10}
\end{equation*}
$$

Taking

$$
\begin{equation*}
E=\bigcap_{n=1}^{\infty} E_{n} \tag{11}
\end{equation*}
$$

we have $|E|>1-\epsilon$. (see (4)).
Let $f(x) \in L^{1}[0,1]$. Then by (1) one can easily choose a subsequence $\left\{f_{k_{n}}(x)\right\}_{n=1}^{\infty}$ such that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \int_{0}^{1}\left|\sum_{n=1}^{N} f_{k_{n}}(x)-f(x)\right| d x=0 \tag{12}\\
& \int_{0}^{1}\left|f_{k_{n}}(x)\right| d x \leq \bar{\epsilon} \cdot 4^{-8(n+2)}, \quad n \geq 2 \tag{13}
\end{align*}
$$

where $\bar{\epsilon}=\min \left\{\frac{\epsilon}{2} ;\|f\|\right\}$ and $f_{k_{1}}(x)$ is of the form

$$
\begin{gather*}
\sum_{|k|=0}^{m_{\nu_{1}}-1} b_{k} e^{i 2 \pi k x}=f_{k_{1}}(x)=\sum_{|k|=0}^{m_{\nu_{1}}-1} b_{\bar{\sigma}(k)} e^{i 2 \pi \bar{\sigma}(k) x} \\
\left|b_{k}\right|>\left|b_{k+1}\right|>0, \quad \forall|k| \in\left[1, m_{\nu_{1}}\right] \tag{14}
\end{gather*}
$$

and $\bar{\sigma}(|k|)$ - is some rearrangement of natural numbers $1,2, \ldots, m_{\nu_{1}}-1 \quad(\bar{\sigma}(-k)=-\bar{\sigma}(k))$.

We evidently have

$$
\begin{equation*}
\int_{0}^{1}\left|f(x)-f_{k_{1}}(x)\right| d x<\frac{\bar{\epsilon}}{2} \tag{15}
\end{equation*}
$$

Now set

$$
\left.\begin{array}{c}
a_{k}=\left\{\begin{array}{ll}
b_{k}, & k \in\left[1, m_{\nu_{1}}\right) ; \\
a_{k}^{(n)}, & k \in\left[m_{n-1}, m_{n}\right),
\end{array} \quad n \geq \nu_{1}+1 .\right.
\end{array}\right\} \begin{aligned}
& \sigma(k)= \begin{cases}\bar{\sigma}(k), & k \in\left[1, m_{\nu_{1}}\right) ; \\
\sigma_{n}(k), & k \in\left[m_{n-1}, m_{n}\right), \quad \forall n \geq \nu_{1}+1 .\end{cases} \\
& g_{1}(x) \equiv Q_{1}(x)=f_{k_{1}}(x)=\sum_{|k|=0}^{m_{\nu_{1}-1}} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x} .
\end{aligned}
$$

Suppose we already have determined the numbers $\nu_{1}<$ $\ldots<\nu_{q-1}, m_{\nu_{1}}-1=l(1)<l(2)<\ldots<l(q-$ 1), $\left\{b_{l(k)}\right\}_{k=1}^{q-1}$, the functions $g_{n}(x), f_{\nu_{n}}(x), \quad 1 \leq n \leq q-1$ and the polynomials

$$
\begin{gathered}
\sum_{|k|=M_{n}}^{\bar{M}_{n}} a_{k} e^{i 2 \pi k x}=Q_{n}(x)=\sum_{|k|=M_{n}}^{\bar{M}_{n}} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}, \\
M_{n}=m_{\nu_{n}-1}, \quad \bar{M}_{n}=m_{\nu_{n}}-1, \quad M_{1}>N_{1}
\end{gathered}
$$

satisfying the conditions:

$$
\begin{gathered}
g_{n}(x)=f_{k_{n}}(x), \quad x \in E_{\nu_{n}}, \quad 1 \leq n \leq q-1 \\
\int_{0}^{1}\left|g_{n}(x)\right| d x<4^{-3 n} \cdot \bar{\epsilon} ; \quad 1 \leq n \leq q-1 \\
\int_{0}^{1}\left|\sum_{k=2}^{n}\left[\left(Q_{k}(x)+b_{l(k)} e^{i 2 \pi \sigma(l(k)) x}\right)-g_{k}(x)\right]\right| d x< \\
<4^{-8(n+1)}, \quad 1 \leq n \leq q-1 \\
l(n)=\min \left\{k \in N: \quad k \notin\left[1, m_{\nu_{1}}\right] \cup\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.\left.\cup\left(\bigcup_{j=2}^{n-1}\left[M_{j}, \bar{M}_{j}\right]\right) \cup\{l(s)\}_{s=1}^{n-1}\right\}\right\}, \\
\max _{M_{n} \leq N<\bar{M}_{n}} \int_{0}^{1}\left|\sum_{k=M_{n}}^{N} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right| d x<4^{-3 n}, \quad 1 \leq n \leq q-1 . \\
\max _{M_{n} \leq N<\bar{M}_{n}} \int_{0}^{1}\left|\sum_{k=M_{n}}^{N} a_{k} e^{i 2 \pi k x}\right| d x<4^{-3 n}, \quad 1 \leq n \leq q-1 . \\
\left|a_{\bar{M}_{n}}\right|>\left|b_{l(n)}\right|>\left|a_{M_{n+1}}\right|
\end{gathered}
$$

We choose a natural number ν_{q} and a function $f_{\nu_{q}}(x)$ from the sequence (1) such that

$$
\begin{gather*}
\int_{0}^{1} \mid f_{\nu_{q}}(x)-\left(f_{k_{q}}(x)-\sum_{n=2}^{q-1}\left[\left(Q_{n}(x)+b_{l(n)} e^{i 2 \pi \sigma(l(n)) x}\right)-\right.\right. \\
\left.\left.-g_{n}(x)\right]\right) \mid d x<4^{-8(q+2)} \tag{20}
\end{gather*}
$$

$$
\begin{equation*}
\left|a_{\left(M_{q}\right)}\right|<\left|b_{l(q-1)}\right|, \quad \text { where } M_{q}=m_{\nu_{q}-1} \tag{21}
\end{equation*}
$$

(see (10) and (16)). Then by (13) and (19) we have

$$
\begin{aligned}
\int_{0}^{1} \mid f_{k_{q}}(x)- & \sum_{n=2}^{q-1}\left[\left(Q_{n}(x)+b_{l(n)} e^{i 2 \pi \sigma(l(n)) x}\right)-\right. \\
& \left.-g_{n}(x)\right] \mid d x<4^{-8 q-1}
\end{aligned}
$$

Therefore by (20) we have

$$
\begin{equation*}
\int_{0}^{1}\left|f_{\nu_{q}}(x)\right| d x<4^{-8 q} \tag{22}
\end{equation*}
$$

We define

$$
\begin{align*}
& Q_{q}(x)=\bar{Q}_{\nu_{q}}(x)=\sum_{k=M_{q}}^{\bar{M}_{q}} a_{k} e^{i 2 \pi k x}, \\
& \bar{M}_{q}=m_{\nu_{q}}-1, \quad M_{q}=m_{\nu_{q}-1}, \tag{23}\\
& g_{q}(x)=f_{k_{q}}(x)+\left[\bar{g}_{\nu_{q}}(x)-f_{\nu_{q}}(x)\right], \tag{24}\\
& l(q)=\min \left\{k \in N: \quad k \notin\left[1, m_{\nu_{1}}\right] \cup\right. \\
& \left.\left.\cup\left(\bigcup_{n=2}^{q-1}\left[M_{n}, \bar{M}_{n}\right]\right) \cup\{l(s)\}_{s=1}^{q-1}\right\}\right\}, \tag{25}\\
& b_{l(q)}=\min \left(4^{-8(q+3)} ; \quad \frac{1}{2}\left|a_{\bar{M}_{q}}\right|\right) . \tag{26}
\end{align*}
$$

Then in view of (3)-(7), (16), (19)-(26) we get

$$
\begin{equation*}
g_{q}(x)=f_{k_{q}}(x), \quad x \in E_{\nu_{q}} \tag{27}
\end{equation*}
$$

$$
\int_{0}^{1}\left|g_{q}(x)\right| d x \leq \int_{0}^{1} \mid f_{\nu_{q}}(x)-\left(f_{k_{q}}(x)-\sum_{j=2}^{q-1}\left[\left(Q_{j}(x)+\right.\right.\right.
$$

$$
\begin{align*}
& \left.\left.\left.+b_{l(j)} e^{i 2 \pi \sigma(l(j)) x}\right)-g_{j}(x)\right]\right)\left|d x+\int_{0}^{1}\right| \bar{g}_{\nu_{q}}(x) \mid d x+ \\
+ & \int_{0}^{1}\left|\sum_{j=2}^{q-1}\left[\left(Q_{j}(x)+b_{l(j)} e^{i 2 \pi \sigma(l(j)) x}\right)-g_{j}(x)\right]\right| d x<4^{-3 q} \tag{28}\\
& \int_{0}^{1}\left|\sum_{j=2}^{q-1}\left[\left(Q_{j}(x)+b_{l(j)} e^{i 2 \pi \sigma(l(j) x}\right)-g_{j}(x)\right]\right| d x \leq \\
\leq & \int_{0}^{1} \mid f_{\nu_{q}}(x)-\left(f_{k_{q}}(x)-\sum_{j=2}^{q}\left[\left(Q_{j}(x)+b_{l(j)} \cdot e^{i 2 \pi \sigma(l(j)) x}\right)\right.\right. \\
- & \left.\left.g_{j}(x)\right]\right)\left|d x++\left|b_{l(q)}\right|+\int_{0}^{1}\right| \bar{Q}_{\nu_{q}}(x)-\bar{g}_{\nu_{q}}(x) \mid d x<4^{-8(q+1)} \tag{29}
\end{align*}
$$

$$
\max _{M_{q} \leq N<\bar{M}_{q}} \int_{0}^{1}\left|\sum_{|k|=M_{q}}^{N} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right| d x \leq
$$

$$
\leq 3 \cdot \int_{0}^{1}\left|f_{\nu_{q}}(x)\right| d x<4^{-3 q}
$$

$$
\begin{equation*}
\max _{M_{q} \leq N<\bar{M}_{q}} \int_{0}^{1}\left|\sum_{|k|=M_{q}}^{N} a_{k} e^{i 2 \pi k x}\right| d x \leq 3 \cdot \int_{0}^{1}\left|f_{\nu_{q}}(x)\right| d x<4^{-3 q} \tag{31}
\end{equation*}
$$

$$
\left|a_{\sigma\left(M_{q}\right.}\right|>\ldots>\left|a_{\sigma(k)}\right|>\ldots>\left|a_{\bar{M}_{q}}\right|>
$$

$$
\begin{equation*}
>\left|b_{l(q)}\right|>\left|a_{M_{q+1}}\right|, \quad \forall q \geq 1 \tag{32}
\end{equation*}
$$

Clearly, we can use induction to determine a sequence $\left\{g_{q}(x)\right\}$ of functions, numbers $\{l(q)\}_{q=2}^{\infty},\left\{b_{l(q)}\right\}_{q=2}^{\infty}$ and a sequence $\left\{Q_{q}(x)\right\}$ of polynomials satisfying the conditions (25)- (32) for all $q \geq 1$.

Taking into account the choice of $\{\sigma(k)\}_{k=1}^{\infty}$, $\left\{\left[M_{q}, \bar{M}_{q}\right]\right\}_{q=2}^{\infty}$ and $\{l(q)\}_{q=2}^{\infty}$ (see (17), (23), (25)) we obtain, that the sequence of natural numbers

$$
\begin{gather*}
\sigma(1) \ldots \sigma\left(m_{\nu_{1}}-1\right) ; \quad l(1), \sigma\left(M_{2}\right) \ldots \sigma\left(\bar{M}_{2}\right) \\
; l(2), \ldots, l(n-1), \sigma\left(M_{n}\right) \ldots \sigma(k) \ldots \sigma\left(\bar{M}_{n}\right) ; \quad l(n) \ldots \tag{33}
\end{gather*}
$$

is some rearrangement of sequence $1,2, \ldots, n, \ldots$.
We may write the sequence (33) in the form

$$
\sigma_{f}^{\circ}(1), \quad \sigma_{f}^{\circ}(2), \ldots, \sigma_{f}^{\circ}(k), \ldots
$$

We define function $g(x)$ and series $\sum_{k=1}^{\infty} d_{\sigma_{f}^{\circ}(k)} e^{i 2 \pi \sigma_{f}^{\circ}(k) x}$ in the following form

$$
\begin{gather*}
g(x)=\sum_{k=1}^{\infty} g_{k}(x) ; \quad g_{1}(x)=Q_{1}(x)=f_{k_{1}}(x)= \\
=\sum_{k=1}^{m_{\nu_{1}}-1} a_{k} e^{i 2 \pi \sigma(k) x} \tag{34}
\end{gather*}
$$

$$
\begin{align*}
& \sum_{k=1}^{\infty} d_{\sigma_{f}^{\circ}(k)} e^{i 2 \pi \sigma_{f}^{\circ}(k) x}=\sum_{k=1}^{m_{\nu_{1}}-1} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}+ \\
+ & \sum_{n=2}^{\infty}\left[\sum_{|k|=M_{n}}^{\bar{M}_{n}} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}+b_{l(n)} e^{i 2 \pi \sigma(l(n)) x}\right] \tag{35}
\end{align*}
$$

where $\left\{d_{\sigma_{f}^{\circ}(k)}\right\}_{k=1}^{\infty}$-is a sequence

$$
\begin{gathered}
a_{\sigma(1)} \ldots a_{\sigma\left(m_{\nu_{1}}-1\right)}, b_{l(1)}, a_{\sigma\left(M_{2}\right.} \ldots a_{\overline{\sigma\left(M_{2}\right)}} ; b_{l(2)}, \ldots, b_{l(n-1)}, \\
, a_{\sigma\left(M_{n}\right)} \cdot a_{\sigma(k)} . . a a_{\sigma\left(M_{n}\right.} ; b_{l(n)} ; a_{\sigma\left(M_{n+1}\right)} \ldots
\end{gathered}
$$

From this and from (11), (12), (21), (26), (27), (32)-(35) follows that

$$
\begin{gathered}
\left|d_{\sigma_{f}^{\circ}(k)}\right|>\left|d_{\sigma_{f}^{\circ}(k+1)}\right|, \quad \forall k \geq 1, \\
\sum_{k=1}^{\infty}\left|d_{k}\right|^{r}<\infty, \quad \forall r>2 \\
g(x) \in L_{[0,1]}^{1}, \quad g(x)=f(x), \quad x \in E .
\end{gathered}
$$

Let $N>M_{1}$ be an arbitrary natural number. Then for some natural q we have

$$
N_{q} \leq N<N_{q+1}
$$

where

$$
N_{q}=M_{1}+1+\sum_{k=2}^{q}\left[\bar{M}_{k}-M_{k}+2\right] \quad \forall q \geq 2
$$

The relations (26),(28)-(35) imply that

$$
\begin{gathered}
\int_{0}^{1}\left|\sum_{k=1}^{N} d_{\sigma_{f}^{\circ}(k)} e^{i 2 \pi \sigma_{f}^{\circ}(k) x}-g(x)\right| d x \leq \\
\leq \int_{0}^{1}\left|\sum_{\gamma=2}^{q-1}\left[\left(Q_{j}(x)+b_{l(j)} e^{i 2 \pi \sigma(l(j)) x}\right)-g_{j}(x)\right]\right| d x+ \\
+\sum_{s=q}^{\infty} \int_{0}^{1}\left|g_{s}(x)\right| d x+\max _{M_{q} \leq m \leq \bar{M}_{q}} \int_{0}^{1}\left|\sum_{|k|=M_{q}}^{m} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right| d x+ \\
+\left|b_{l(q)}\right|<2^{-q} . \\
\leq \sum_{n=1}^{\infty}\left(\max _{M_{n} \leq N \leq \bar{M}_{n}} \int_{0}^{1}\left|\sum_{|k|=M_{n}}^{N} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right| d x\right)+ \\
\quad\left|\left|G_{N}(g)\right|_{1}=\int_{0}^{1}\right| \sum_{k=1}^{N} c_{\sigma_{f}^{\circ}(k)} e^{i 2 \pi \sigma_{f}^{\circ}(k) x} \mid d x \\
+\sum_{k=1}^{\infty}\left|b_{p(k)}\right| \leq 2 \int_{0}^{1}\left|g_{1}(x)\right| d x+\bar{\epsilon} \sum_{n=1}^{\infty} 4^{-n} \\
\leq 3 \int_{0}^{1}|g(x)| d x \leq 12 \cdot \int_{0}^{1}|f(x)| d x
\end{gathered}
$$

Similarly, one can show that

$$
\begin{gathered}
\left\|S_{N}(g)-g\right\|=\int_{0}^{1}\left|\sum_{k=1}^{N} d_{k} e^{i 2 \pi k x}-g(x)\right| d x<2^{-q} \\
\left\|S_{N}(g)\right\| \leq 3 \int_{0}^{1}|g(x)| d x \leq 12 \int_{0}^{1}|f(x)| d x
\end{gathered}
$$

Consequently

$$
\begin{gathered}
d_{\sigma_{f}^{\circ}(k)}=\int_{0}^{1} g(x) e^{-2 \pi \sigma_{f}^{\circ}(k) x} d x \\
\left(d_{k}=\int_{0}^{1} g(x) e^{-2 \pi k x} d x=c_{k}(g)\right)
\end{gathered}
$$

Theorem 3 is proved.
Now we will prove that the system $\left\{e^{i 2 \pi \sigma(k) x}\right\}_{k=-\infty}^{+\infty}$ and set E (see (11) and (17)) satisfy the conditions of theorem 4.

Repeating the arguments in the proof of theorem 3 for each $f(x) \in L^{1}[0,1]$ we can use induction to determine a sequence of polynomials $\left\{Q_{n}(x)\right\}$ from the sequence (2) of the form

$$
\begin{gathered}
Q_{n}(x)=\sum_{|k|=m_{\nu_{n}-1}}^{m_{\nu_{n}}-1} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x},\left|a_{\sigma(k)}\right|>\left|a_{\sigma(k+1)}\right|>0 \\
k \in\left[m_{\nu_{n}-1}, m_{\nu_{n}}\right), n \geq 1, \nu_{n} \nearrow
\end{gathered}
$$

and a function $g(x) \in L^{1}[0,1]$ coinciding with $f(x)$ on E satisfying the conditions
$\int_{0}^{1}\left|\sum_{n=1}^{j}\left(\sum_{|k|=m_{\nu_{n}-1}}^{m_{\nu_{n}}-1} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right)-g(x)\right| d x \leq 2^{-2 j}, j>1$
$\left.\max _{m_{\nu_{n}-1} \leq m<m_{\nu_{n}}} \int_{0}^{1} \mid \sum_{|k|=m_{\nu_{n}-1}}^{m} a_{\sigma(k)} e^{i 2 \pi \sigma(k) x}\right)-g(x) \mid d x \leq$

$$
\leq 2^{-n}, n>1
$$

Theorem 4 is proved.

B. Proof of Theorems 2 and 5

We need the following elementary result:

Lemma 2. Let m be an arbitrary natural number. Given any finite sequence $\left\{x_{k}\right\}_{k=1}^{n}$ of non negative integers and a monotonically increasing finite sequence $\left\{y_{k}\right\}_{k=1}^{n}$. Then

$$
\sum_{k=1}^{m} x_{\sigma(k)} y_{k} \leq \sum_{k=1}^{m} x_{k} y_{k}
$$

where $\{\sigma(k)\}_{k=1}^{m}$ is a permutation of positive integers such that $x_{\sigma(1)} \geq x_{\sigma(2)} \geq \ldots \geq x_{\sigma(m)}$.

Proof Let $m=2$ and let $x_{2} \geq x_{1}$ and $y_{1}<y_{2}$. We have $0 \leq\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)=x_{2} y_{2}+x_{1} y_{1}-\left(x_{2} y_{1}+x_{1} y_{2}\right)$,
hence
$\sum_{k=1}^{2} x_{\sigma(k)} y_{k}=x_{\sigma(1)} y_{1}+x_{\sigma(2)} y_{2}=x_{2} y_{1}+x_{1} y_{2} \leq \sum_{k=1}^{2} x_{k} y_{k}$.
It is not hard to see that using the mathematical induction methods we can obtain inequality a) for each natural m.

Lemma 3. Given any sequences $\left\{x_{k}\right\}_{k=1}^{\infty}$ and $\left\{y_{k}\right\}_{k=1}^{\infty}$, with

$$
x_{k} \geq 0, \quad \text { and } 0<y_{1}<y_{2}<\ldots<y_{k}<\ldots
$$

then

$$
\sum_{k=1}^{\infty} x_{n_{k}} y_{k} \leq \sum_{k=1}^{\infty} x_{k} y_{k}
$$

where $\{\sigma(k)\}_{k=1}^{\infty}$ is a permutation of natural numbers $1,2, \ldots$, such that $\left\{x_{\sigma(k)}\right\} \searrow$.

Proof. We may assume that

$$
\sum_{k=1}^{\infty} x_{k} y_{k}<\infty
$$

Let $\{\sigma(k)\}_{k=1}^{\infty}$ be a permutation of natural numbers $1,2, \ldots$ such that

$$
x_{\sigma(1)} \geq x_{\sigma(2)} \geq \ldots \geq x_{\sigma(k)} \geq \ldots
$$

For any natural number s we set

$$
N_{s}=\max \{\sigma(k) ; \quad 1 \leq k \leq s\}
$$

Using lemma 2, with $m=N_{s}$, for $\left\{x_{k}\right\}_{k=1}^{N_{s}}$ and $\left\{y_{k}\right\}_{k=1}^{N_{s}}$ we get

$$
\sum_{k=1}^{N_{s}} x_{\sigma(k)} y_{k} \leq \sum_{k=1}^{N_{s}} x_{k} y_{k} \leq \sum_{k=1}^{\infty} x_{k} y_{k}
$$

Since $x_{k} \geq 0$ and $y_{k}>0$ we obtain

$$
\sum_{k=1}^{s} x_{\sigma(k)} y_{k} \leq \sum_{k=1}^{\infty} x_{k} y_{k}, \quad \text { for all } s \geq 1
$$

what completes the proof of lemma 3.
From lemma 3 we obtain the following
Lemma 4. $G\left(\ln ^{q}\right) \subset G \searrow\left(\ln ^{q}\right)$ for all $q>0$, and $\|f\|_{G \searrow} \leq$ $\|f\|_{G}$.

Proof . Using lemma 3 with $x_{k}=\left|c_{k}(f)\right|^{2}$ and $y_{k}=$ $\ln ^{q} k, q>0, \forall k \geq 1$ we have if $f(x) \in G\left(\ln ^{q}\right)$ then $f(x) \in G \searrow\left(\ln ^{q}\right)$ and $\|f\|_{G \searrow} \leq\|f\|_{G}$ (see definitions $G\left(\ln ^{q}\right)$, $\left.G \searrow\left(\ln ^{q}\right)\right)$.

It is not hard to see that there exists a function $f_{0}(x) \in$ $G \searrow\left(\ln ^{q}\right)$ but $f_{0}(x) \notin G\left(\ln ^{q}\right), q>0$.

Proof of Theorem 5. Let $f(x) \in G^{\searrow}\left(\ln ^{q}\right), q>0$.
From the definition of $G \searrow\left(\ln ^{q}\right)$ we get $\|f\|_{G \searrow}=$
$\sum_{k=1}^{\infty}\left|c_{\sigma(k)}(f)\right|^{2} \ln ^{q} k<\infty$, where $\{\sigma(k)\}$ is a permutation of the natural numbers $1,2, \ldots$, which

$$
\left|c_{\sigma(k)}(f)\right| \geq\left|c_{\sigma(k+1)}(f)\right| \geq \ldots
$$

We put

$$
\lambda_{m}(f)=\sum_{k=m}^{\infty}\left|c_{\sigma(k)}(f)\right|^{2} \ln ^{q} k
$$

From this we have

$$
k\left|c_{\sigma(k)}(f)\right|^{2} \ln ^{q} k \leq \sum_{s=k}^{2 k-1}\left|c_{\sigma(s)}(f)\right|^{2} \ln ^{q} s<\lambda_{k}(f) .
$$

Hence

$$
\left|c_{\sigma(k+1)}(f)\right|^{2} \leq\left|c_{\sigma(k)}(f)\right|^{2} \leq \frac{\lambda_{k}(f)}{k \ln ^{q} k}
$$

From an approximation's error we obtain

$$
\begin{aligned}
& R_{k}^{2}(f)=\sum_{s=k}^{\infty}\left|c_{\sigma(s)}(f)\right|^{2} \leq \lambda_{\left[\frac{k}{2}\right]}(f) \sum_{s=\left[\frac{k}{2}\right]} \frac{1}{s \ln ^{q} s} \leq \\
\leq & \lambda_{\left[\frac{k}{2}\right]}(f) \int_{\left[\frac{k}{2}\right]}^{\infty} \frac{d x}{x \ln ^{q} x} \leq \lambda_{\left[\frac{k}{2}\right]}(f) \frac{1}{(q-1)\left(\ln \left[\frac{k}{2}\right]\right)^{q-1}}
\end{aligned}
$$

Since $\lim _{k \rightarrow \infty} \lambda_{k}(f)=0$ and $\lambda_{k}(f) \leq\|f\|_{G \searrow(\ln q)}$.
We get

$$
\begin{gathered}
R_{k}^{2}(f)=o\left(\frac{1}{\ln ^{q-1} k}\right) \\
R_{k}^{2}(f) \leq \frac{\|f\|_{G \searrow}}{q-1} \frac{1}{(\ln k-\ln 2)^{q-1}}, \forall k>2 .
\end{gathered}
$$

Conversely suppose that there exists $C>0$ such that

$$
R_{k}^{2}(f) \leq C \frac{1}{\ln ^{q} k}, q>0, k>1
$$

Since
$R_{k}^{2}(f)=\sum_{s=k+1}^{\infty}\left|c_{\sigma(s)}(f)\right|^{2} \geq \sum_{s=k+1}^{2 k}\left|c_{\sigma(s)}(f)\right|^{2} \geq k\left|c_{\sigma(2 k)}(f)\right|^{2}$,
then

$$
\left|c_{\sigma(2 k+1)}(f)\right|^{2} \leq\left|c_{\sigma(2 k)}(f)\right|^{2}<C \frac{1}{k(\ln k)^{q}}
$$

Hence, if $p<q-1(q-p>1)$

$$
\sum_{k=1}^{\infty}\left|c_{\sigma(k)}(f)\right|^{2}(\ln k)^{p} \leq 2 C \sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{q-p}}<\infty
$$

which completes the proof of Theorem 5.
In the proof of Theorem 2 we will use the following theorem of P.L. Ul'yanov [30].

Let a $\omega(t)$ be a nonnegative function, increasing in $(0,1]$ with $\int_{0}^{1} \alpha(x) d x=\infty$ and let for an constant C and for all $\delta \in$ ($0, \frac{1}{4}$]

$$
\begin{aligned}
\frac{1}{\delta^{2}} \int_{0}^{\delta} x^{2} \alpha(x) d x \leq C \int_{\delta}^{1} \alpha(x) d x \\
\frac{1}{\delta^{2}} \int_{0}^{\delta} x^{2} \alpha(x) d x \leq C \int_{\delta}^{1} \alpha(x) d x
\end{aligned}
$$

Then the condition

$$
\int_{0}^{1} \int_{0}^{1}[f(x+t)-f(x-t)]^{2} \alpha(x) d x<\infty
$$

is equivalent to

$$
\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{2} \omega(k)<\infty
$$

From this theorem we obtain that the condition

$$
\int_{0}^{1} \int_{0}^{1} \frac{[f(x+t)-f(x-t)]^{2}}{t}\left(\ln \frac{1}{t}\right)^{\delta} d x<\infty, \quad \delta>0
$$

is equivalent to

$$
\sum_{k=1}^{\infty}\left|c_{k}(f)\right|^{2}(\ln k)^{1+\delta}<\infty
$$

Hence and from Lemma 4 and Theorem 5 (with $q=1+\delta$) we have the proof of Theorem 2.

REFERENCES

[1] R. A. DeVore, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1996) 173-187.
[2] S.V. Konyagin, V.N. Temlyakov, A remark on Greedy approximation in Banach spaces, East J. on Approx. 5 (1999) 1-15.
[3] V.N. Temlyakov, Greedy Algoritm and m-term Trigonometric approximation, Constructive Approx. 14 (1998) 569-587.
[4] P. Wojtaszczyk, Greedy Algoritm for General Biorthogonal Systems, Journal of Approximation Theory 107 (2000) 293-314.
[5] M. G. Grigoryan, Uniform convergence of the greedy algorithm with respect to the Walsh system, Studia Math. 198:2 (2010) 197-206.
[6] T.W. Körner, Decreasing rearranged Fourier series, The J.FourierAnalysis and Applications 5 (1999) 1-19.
[7] R. Gribonval, M. Nielsen, On the quasi-greedy property and uniformly bounded orthonormal systems, Technical Report Aalborg University, 2003.
[8] M.G. Grigorian, K.S. Kazarian, F. Soria, Mean convergence of orthonormal Fourier series of modified functions, Trans. Amer. Math. Soc. (TAMS) 352:8(2000) 3777-3799.
[9] J. Zhu, X. Li, F. Arroyo, E. Arroyo, Error analysis of reweighted 11 greedy algorithm for noisy reconstruction, Journal of Computational and Applied Mathematics 286(2015) 93-101.
[10] J. Zhu, , X. Li, A generalized ll greedy algorithm for image reconstruction in $C T$, Journal of Computational and Applied Mathematics 219:10(2013) 5487-5494.
[11] M.G. Grigoryan, R.E. Zink, Greedy approximation with respect to certain subsystems of the Walsh orthonormal system, Proc. Amer. Math. Soc. 134(2006) 3495-3505.
[12] M. G. Grigoryan, L. N. Galoyan, On the uniform convergence of negative order Cesaro means of Fourier series, J. Math. Anal. Appl. 434 (2016), no. 1, 554-567.
[13] G. Davis, S. Mallat, M. Avalanda, Adaptive greedy approximations, Constr. Approx. 14(1998) 569-587.
[14] S. Gogyan, Greedy algorithm with regard to Haar subsystems, East Journal on Approximation 11:2(2005) 221-236.
[15] S.A. Episkoposian, On the divergence of Greedy algorithms with respect to Walsh subsystems, Nonlinear Analysis: Theory, Methods \& Applications 66:8(2007) 1782-1787.
[16] M.G. Grigoryan, S.L Gogyan, On nonlinear approximation with respect to the Haar system and modifications of functions, An. Math. 32(2006) 49-80.
[17] M. G. Grigoryan, On convergence of greedy algorithm in the norm of L^{1}, International Conference, Mathematics in Armenia, Advances and Perspectives, September 30 - October 7, 2003, Tsahkadzor, Armenia, 44-45.
[18] M. G. Grigoryan, A. A. Sargsyan, On the universal functions for the class $L^{p}[0,1]$, J. Funct. Anal. 270 (2016), 3111-3133.
[19] S.A. Episkoposian, M.G Grigoryan, Convergence of greedy algorithm by generalized Walsh system, Journal of Mathematical Analysis and Applications 389 (2012) 1374-1379.
[20] V.N. Temlyakov, Nonlinear Methods of Approximation, Found.Comput. Math. 3(2003) 33-107.
[21] D.E. Menchoff [D. E. Men'shov], Sur la convergence uniforme des series de Fourier, Mat. Sb. 11:53(1942) 67-96 (French; Russian summary).
[22] D.E. Men'shov, On Fourier series of integrable functions, Trudy Moskov. Mat. Obshch. 1 (1952) 5-38.
[23] K.I. Oskolkov, The uniform modulus of continuity of integrable functions on sets of positive measure, Dokl. Akad. Nauk SSSR 229(1976) 304306; English transl. in Soviet Math. Dokl. 17(1976).
[24] J.J. Price, Walsh series and adjustment of functions on small sets, Illinois J. Math. 13(1969) 131-136.
[25] M.G. Grigorian [M. G. Grigoryan], On convergence of Fourier series in complete orthonormal systems in the L^{1} metric and almost everywhere, Math. USSR-Sb. 70(1991) 445-466.
[26] M.G. Grigorian [M. G. Grigoryan], On the representation of functions by orthogonal series in weighted L^{p} spaces, Studia. Math. 134:3(1999) 207-216.
[27] M.G. Grigorian [M. G. Grigoryan], On the L_{μ}^{p}-strong property of orthonormal systems, Matem. Sbornik 194:10(2003) 1503-1532.
[28] R.DeVore and G.Lorentz, Constructive Approximation, A Series of Comprehensive Studies in Math. 303(1993).
[29] M.G. Grigoryan, On convergence of greedy algorithm by trigonometric system in the metric of L^{p}, Izvestiya Natsionalnoi Akademii Nauk Armenii. Matematica 39:5(2004) 1-14.
[30] P.L. Ulyanov, On some equivalent conditions of convergence of series and integrals, UMN 8:6(1953) 33-36.

Martin Grigoryan Date of Birth: 05.05.1954.
Education (beginning with IHE):
1971-1976 Student of Yerevan State University (YSU)

1976-1979 Post Graduate Student (YSU)
Academic degree: Doctor of Phys.-Math. Sciences
candidate : Convergence of orthogonal series in L^{p} metrics, 1980, Institute of Mathematics, National Academy of Sciences of Armenia
doctoral : Convergence of regular and dual Fourier series by complete orthogonal systems, 1997, Faculty of Mathematics of YSU

Professional experience:
From 1980 - present, Faculty of Physics of YSU
1993-1994 - Visiting Professor UAM, Madrid, Spain
Academic courses-: Mathematical analysis, Functional analysis, The theory
of functions, Linear an nonlinear approximations
Scale of professional interests: Harmonic analysis and the theory of approximations

Participation in grant projects (present and past):
1994-1996 - Grant MVR000 from international Science Foundation,
1996 - Grant from Promethues-Gitutjun, Joint- Stock Company,
1997 - Grant from Promethues-Gitutjun, Joint- Stock Company,
1998 - Grant from Promethues-Gitutjun, Joint- Stock Company,
1997-1999 - Grant 96-880 from the Government of Armenia,
2000-2003 - Grant 00-310 from the Government of Armenia
2004-2007 - Grant- 01-00 from the Government of Armenia
2008 - present - Grant- 45 from the Government of Armenia
Honors : The best scientific work 2009,
RA President Award 2010
Languages: Armenian, Russian, English, Spanish, German
Author of more than 100 scientific works published in well known scientific journals (Trans. Amer. Math. Soc., J. of Funct. Anal., J. of Math. Anal. and Appl., Proc. Amer. Math. Soc., Studia Math. etc.).

